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Delineation of the DNA-damaging properties of UVA radiation is a major issue in understanding solar
carcinogenesis. Emphasis was placed in this study on the formation of cyclobutane pyrimidine dimers (CPDs),
which are now well established as the most frequent UVA-induced DNA lesions in human skin. The yield of
CPDs was determined by a chromatographic assay following ex vivo UVA and UVB irradiation of biopsies taken
from either phototype II or IV volunteers. A clear correlation was found between the frequency of UVB-induced
CPDs and both the phototype and the minimum erythemal dose (MED). Similar results were obtained for the
induction of CPDs upon exposure to UVA. Moreover, an excellent correlation was observed for each donor
between the yield of DNA damage induced by either UVB or UVA. These observations show that the key
parameters driving UVA-induced formation of CPDs are attenuation of radiation in the skin and the number of
photons reaching skin cells rather than the cellular content in photosensitizers. In addition, the results show
that both MED and phototype are good predictors of the vulnerability of DNA toward UVB and UVA in the skin.
This result is of importance for the identification of individuals to be extensively protected.
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INTRODUCTION
Induction of damage to DNA is a key initiating event in the
induction of skin cancer by solar radiation, and in particular
the most deleterious portion of its spectrum in the UV range
(Melnikova and Ananthaswamy, 2005). Emphasis has been
placed on UVB radiation that overlaps with DNA absorption
and triggers the formation of the well-known pyrimidine
dimers. UVA represents the less energetic portion of solar UV
and is less biologically active than UVB. Yet, involvement of
UVA in skin carcinogenesis is a growing concern for several
reasons. First, UVA was found to be mutagenic in cultured
cells (Drobetsky et al., 1995; Stary et al., 1997; Rochette et al.,
2003; Kappes et al., 2006) and tumorogenic in mice (de Laat
et al., 1997a, 1997b; Pastila and Leszczynski, 2005). UVA was
also proposed by some authors to be involved in the induction
of malignant melanoma (Setlow et al., 1993; Setlow, 1999;
Wang et al., 2001), in agreement with the recent hypothesis
that the increasing incidence of melanoma, particularly in

young women, reflects their increased intermittent use of UVA-
rich sunlamps (Coelho and Hearing, 2010). It should also be
kept in mind that UVA is 20 to 100 times more abundant than
UVB in solar light, depending on time of the day, latitude, and
altitude. Moreover, although large improvements were made
as the result of more severe regulations, sunscreens still provide
a better protection in the UVB than in the UVA range.
Exposure to natural UVA thus represents a rather large dose. To
this must be added exposure resulting from the increasing use
of artificial tanning equipment using UVA-rich sources.
Altogether, the question is raised of the impact of UVA
radiation on public health. The recent decision of the
International Agency for Research on Cancer to classify
artificial UV devices as carcinogens (El Ghissassi et al., 2009)
further emphasizes the carcinogenic risk associated with UVA.

It appears that a deeper understanding of the carcinogenic
effects of UVA is needed. Physiological responses such
as inflammation and immunodepletion (Krutmann, 1998;
Halliday, 2005) can be put forward. Another likely explana-
tion is the induction of damage to DNA. The genotoxic effects
of UVA are most often described in terms of oxidative
damage induced by photosensitization reactions (Wondrak
et al., 2006; Cadet et al., 2009) and worsened by the release
of iron from ferritin (Pourzand et al., 1999). However, UVA-
induced DNA damage cannot be limited to oxidative lesions
and cyclobutane pyrimidine dimers (CPDs) also have to
be considered. CPDs are the major dimeric lesions pro-
duced upon UVB irradiation, together with pyrimidine (6–4)
photoproducts (64PPs; Cadet et al., 2005). These photo-
products may be produced at any of the four bipyrimidine
dinucleotides (TT, TC, CT, and CC), although with drastically
different frequencies (Douki and Cadet, 2001). The strong
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mutagenic impact of CPDs is well documented in cultured
cells (You et al., 2001) and in human skin tumors (Brash
et al., 1991; Dumaz et al., 1993; Ziegler et al., 1993).

However, a number of evidence show that formation
of pyrimidine dimers is not limited to the most energetic UV
radiation and that they may also be produced by UVA as
observed in bacteria (Tyrrell, 1973), cultured mammalian
cells (Freeman and Ryan, 1990; Kielbassa et al., 1997; Kvam
and Tyrrell, 1997; Perdiz et al., 2000; Douki et al., 2003;
Courdavault et al., 2004), and skin (Freeman et al., 1989;
Young et al., 1998b; Mouret et al., 2006). The UVA
photochemistry of DNA was found to be rather specific.
In contrast to UVB, UVA does not induce the formation of
64PPs (Perdiz et al., 2000; Douki et al., 2003; Courdavault
et al., 2004). Among the CPDs formed, a predominance of TT
cyclobutane dimer, much larger in proportion than upon
UVB irradiation, is observed for UVA (Douki et al., 2003;
Rochette et al., 2003; Courdavault et al., 2004). A 10-fold
lower yield of TC and CT CPD is observed, whereas the CC
derivative is not detected (Douki et al., 2003; Courdavault
et al., 2004). UVA-induced formation of CPDs may be
explained by triplet energy transfer photosensitization reac-
tions as documented for a series of molecules (Charlier and
Hélène, 1967; Traynor and Gibbs, 1999; Lhiaubet et al.,
2001; Sauvaigo et al., 2001; Lhiaubet-Vallet et al., 2004).
An alternative pathway is a direct photoreaction resulting
from the low but significant absorption of UVA photons by
DNA (Sutherland and Griffin, 1981; Mouret et al., 2010).
Observations that CPDs can be induced in isolated naked
DNA upon UVA irradiation (Quaite et al., 1992; Zhang et al.,
1997; Kuluncsics et al., 1999; Jiang et al., 2009) with the
same efficiency and distribution than in cells (Kuluncsics
et al., 1999; Perdiz et al., 2000) make the direct process
more likely.

The relevance of CPDs to UVA genotoxicity is emphasized
by several other observations. First, the yield of TT CPD
was found to be larger than that of 8-oxo-7,8-dihydro-
20-deoxyguanosine, the main oxidative damage, in both
cultured cells (Kielbassa et al., 1997; Douki et al., 2003;
Courdavault et al., 2004) and skin (Mouret et al., 2006). CPDs
are thus the main class of UVA-induced DNA lesions. In
addition to these results related to the formation of the
damage, observations made in recent mutagenesis studies
of a majority of mutational events at bipyrimidine sites in
UVA-irradiated human cells (Rochette et al., 2003; Kappes
et al., 2006) strengthen the involvement of CPDs in UVA
genotoxicity. An additional worsening aspect is the
preliminary observation of a decrease in repair efficiency of
CPDs following UVA irradiation (Courdavault et al., 2005;
Mouret et al., 2006).

This series of recent observations supports a role of UVA-
induced CPDs in solar carcinogenesis and raises the question
of individual sensitivity to this genotoxic process. The
modulation of the formation of CPDs by the skin type upon
UVA irradiation may be different whether one formation
mechanism is involved or the other. Efficiency of photo-
sensitization depends on the amounts and cellular location of
the sensitizing chromophore(s). These two last parameters are

not necessarily less in favor of DNA damage induction in
dark skin where the photosensitizer load may be higher than
in fair skin. In such a case, phototype would not be correlated
to the yield of CPDs in UVA-irradiated skin. In contrast,
involvement of a direct photochemical process would make
skin sensitivity well predicted by factors reflecting protection
by absorption of the incident photons, that is, melanin
content and thus phototype. Such observation is of impor-
tance for prevention and identification of sensitive indivi-
duals requiring extensive protection from UVA. This work
aimed at addressing this issue by assessing the formation of
CPDs upon UVA irradiation in the skin of two groups of
volunteers with phototype either II or IV. In order to gather
data on all possible bipyrimidine photoproducts, DNA
damage was assessed by a liquid chromatography approach
using mass spectrometry as detection (Douki et al., 2000;
Douki and Cadet, 2001). Comparison was carried out with
the well-known effects of UVB and data were correlated with
minimal erythemal doses (MEDs).

RESULTS
Erythemal response of phototype II and IV volunteers

A rather wide inter-individual variation of UVB-minimum
erythemal dose (MED) determined with a solar simulator was
observed within a same group of phototype (Table 1). In
addition, some overlap in the UVB-MED was observed
between the two groups. However, a significant (Student’s
Po0.01; Wilcoxon Po0.015) 1.6 time larger value for the
UVB-MED was observed for phototype IV. The UVA-MED
was difficult to accurately estimate for the phototype IV group
because of a persistent darkening of the skin (Meirowski
phenomenon) that hampered the visualization of the redness.
Consequently, no significant difference was found between
the UVA-MED of phototypes II and IV because of the poor
quality of the readings for the latter group. Finally,
no significant correlation was found between UVA-MED
and UVB-MED neither in the phototype II nor IV group.

UVB-induced formation of dimeric photoproducts in
skin biopsies

One 4 mm diameter biopsy was exposed for each volunteer
to 0.2 J cm�2 UVB. DNA was then extracted and enzymati-
cally hydrolyzed. The frequency of CPDs and 64PPs at the
four bipyrimidine dinucleotides was then determined by
HPLC associated with tandem mass spectrometry (Supple-
mentary data, Supplementary Figure S1 online). First, the
relative contribution of the different photoproducts was
calculated for each volunteer and averaged according to
the skin phototype. No difference was observed between the
two groups (Figure 1a). As previously reported (Mouret et al.,
2006), TT CPD was the main photoproduct. TC CPD and
TC 64 PP were next in abundance, whereas TT 64PP and CT
CPD were produced in lower yield. CT 64PP, CC 64PP, and
CC CPD were in amounts below the detection limit. Because
the phototype did not affect the distribution, emphasis was
then placed on the formation of TT CPD, the major UVB-
induced pyrimidine dimer. The average level of TT CPD for
the phototype II skin was 41.0±10.5 TT CPD for 106 bases,
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while it was 26.8±7.3 for phototype IV. The respective
medians were 39.7 and 26.9 TT CPD for 106 bases. This
1.5-fold difference was statistically significant (Student’s
Po0.002; Wilcoxon Po0.01).

UVA-induced formation of CPDs in skin biopsies
As we previously observed (Mouret et al., 2006), UVA
irradiation of skin (200 J cm�2) led to the sole formation of TT,
TC, and CT CPDs. When we compared the relative
distribution of the different photoproducts no difference was
observed between the two groups. TT CPD was largely
predominant and represented 90% of the pyrimidine dimers
for both phototype II and IV skins (Figure 1b). The average
level of TT CPD was 39.6±10.3 TT CPD for 106 bases for this
first group, while it was 24.0±7.5 TT CPD for 106 bases for
the latter (Student’s Po0.001; Wilcoxon Po0.005). Medians
were 38.9 and 23.2 TT CPD for 106 bases, respectively. The
frequency of TT CPD was similar in the DNA of biopsies
exposed to either UVB or UVA (Supplementary data,
Supplementary Figure S1 online). The same ratio between
the two yields of TT CPDs was obtained for the phototypes II
and IV: 1.05±0.22 and 1.15±0.25, respectively. It should be
reminded that applied fluence was 1000-time larger for UVA
than UVB and both resulted in the same level of photo-
products in DNA. The present value of the UVB/UVA ratio for
the induction of CPDs is 3 times lower than our previous
estimation (Mouret et al., 2006), because a 295 nm filter was
used for UVB irradiation in this study in order to block short
wavelength photons.

Correlation between MED and formation of photoproducts

Correlation was searched between the MED and the
induction of TT CPD. In the UVA range, no significant
correlation could be found between the UVA-MED and
the frequency of photoproducts in UVA-irradiated biopsies.
This result is not surprising because UVA-MED was found to
be difficult to determine for phototype IV skins. Limiting the
analysis to phototype II did not yield a significant correlation
either. In contrast, a significant correlation (Figure 2a) was
observed between the UVB-MED and the level of TT CPD in
UVB-irradiated biopsies (r¼�0.6253, Po0.002). A good
correlation (r¼�0.5386, Po0.01) was also observed be-
tween UVB-MED and frequency of TT CPD in skin exposed

Table 1. Minimal erythemal doses (MEDs) determined
in the UVB and the UVA ranges for the different
volunteers

Phototype II Phototype IV

Volunteer UVB-MED UVA-MED Volunteer UVB-MED UVA-MED1

V3 1.30 30 V1 1.90 450

V4 1.20 20 V2 1.00 30

V9 1.00 30 V7 0.80 30

V14 1.00 40 V8 1.20 20

V16 1.00 40 V10 2.98 50

V20 1.00 20 V11 1.20 30

V21 0.98 40 V12 2.40 40

V23 0.80 40 V13 1.90 30

V24 0.98 30 V15 1.50 30

V27 0.63 20 V17 1.50 50

V28 1.20 450 V18 1.20 450

V29 1.50 450 V22 1.90 450

Average2 1.05 35.8 Average2 1.62 40.8

SD 0.23 13.8 SD 0.63 14.4

Median 1.00 35.0 Median 1.63 35.0

Results are expressed in J cm�2. The dose corresponds to the overall
spectrum of the source. In the case of the solar simulator used for
the determination of UVB-MED, UVB represented 5% of the incident
energy. The UVA lamp emitted almost exclusively (0.003% UVB) in this
wavelength range. Spectra are provided as supplementary information
online.
1Evaluation of the UVA-MED for phototype IV skin is hampered by
coloration due to the Meirowski phenomenon.
2For calculation of the average UVA-MED, a value of 60 Jcm�2 was
arbitrarily chosen for individuals showing no erythema at 50.
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to UVA (Figure 2b). Finally, a clear correlation was found
between the yield of TT CPD in the UVB and the UVA range
(r¼0.8075, Po0.001; Figure 3).

DISCUSSION
This study addresses an important issue in the delineation
of individual sensitivity toward the adverse effects of solar UV
radiation. It is today clear that the risk of skin cancer is
inversely related to constitutive pigmentation of the skin due
to its protective effects against UV damage (Kaidbey et al.,
1979; Kollias et al., 1991; Miyamura et al., 2007). Indeed, a
70-fold higher risk factor for basal and squamous cell
carcinomas was found in Caucasian Americans with respect
to black or African-American skin (Lea et al., 2007). The
corresponding ratio was almost 20 for melanomas. As a likely
explanation to this observation, it was estimated that darker
skin afford a protection of about 13 times higher than light
skins (Johnson et al., 1998) and several articles showed the
importance of constitutive skin pigmentation for the protec-
tion against UV-induced damage resulting from a single
exposure to one MED (Tadokoro et al., 2003, 2005; Del Bino
et al., 2006; Miyamura et al., 2007). Interestingly, this trend
does not seem to apply to pigmentation induced in skin
by repeated exposures (Yamaguchi et al., 2008). Therefore,
it appears that constitutive pigmentation has a major role in
individual skin UV sensitivity and particularly in the risk of
skin cancer.

The Fitzpatrick’s phototype classification based on self-
reported sunburn sensitivity and tanning ability (Fitzpatrick,
1988) has been extensively used to accurately evaluate skin
sensitivity, with the exception of Asian skins (Kawada, 1986).
MED was proposed as another estimation of skin sensitivity
to UV radiation. The two parameters were found to be
correlated as shown in a French population (Amblard et al.,
1982). Gambichler et al. (2006) have also determined the
relationship between skin phototypes and MED values
for broadband UVB and found significant different mean
UVB-MED values between the skin phototype classes. With

these pieces of information in mind, we chose to compare the
skin sensitivity as revealed by the phototype and the MED,
with the extent of damage induced by UVA radiation within
DNA. Data on the formation of UVB-induced DNA lesions,
for which information is already available, were also
gathered for comparative purposes. Twelve volunteers with
phototype II and 12 with phototype IV were recruited and
their MED was determined following exposure either to UVA
or simulated sunlight. Skin biopsies were taken, irradiated ex
vivo and DNA pyrimidine dimers were quantified therein
using HPLC combined with mass spectrometry. It should be
emphasized that the recruited volunteers were healthy
individuals and that the results obtained in populations
exhibiting abnormal extreme deficiency photosensitivity or
DNA repair capacities might be different.

The MED determined with the solar simulator mostly
reflects individual sensitivity to UVB, as erythemogenic
properties of this UV range is at least two to three orders of
magnitude higher than those of UVA. The MED determined
with simulated sunlight will thus be referred to as UVB-MED.
As previously reported, some overlap was observed between
the two phototype groups for the UVB-MED. Nevertheless, a
significant 1.6 larger value was obtained for phototypes
IV than II, in agreement with published data. For instance in a
wide study of the variation in sunburn sensitivity, Amblard
et al. (1982) found a ratio of 1.8 between the UVB-MED for
photoypes IV and II. Other authors reported values of
1.4 (McGregor et al., 2002; Gambichler et al., 2006) and
1.5 (Westerhof et al., 1990). We also wanted to have access
to a parameter reflecting UVA sensitivity of individuals.
Interestingly, UVA exhibits small but significant erythemo-
genic properties, and determination of MED after exposure
to UVA is routinely used to identify photosensitive patients
(Kim and Lim, 1999). Therefore, we determined the MED
following exposure to UVA, referred to as UVA-MED. The
reading of the MED was much more tedious to analyze after
UVA than after UVB exposure. Indeed, a strong Meirowski
phenomenon, namely a photoinduced pigmentation of the
skin, took place for phototypes IV, preventing an accurate
determination of the UVA-MED. As a result, no difference
was observed for the UVA-MED between the two groups. In
the same way, Gambichler et al. (2006) found no correlation
between UVA-MED and skin phototype. However, clear
erythemal response could be seen for the vast majority of the
phototype II volunteers, with a median UVA-MED of
26 J cm�2, close to our determined value of 35 J cm�2.

Like for UVB-MED, a significant difference was observed
between the two groups for the induction of CPDs following
ex vivo exposure of biopsies to 0.2 J cm�2 UVB, a biologically
relevant dose corresponding for instance to those used in
broadband UVB phototherapy. Interestingly, the ratio bet-
ween the frequencies of TT CPD when the two skin types
were compared (1.5) was identical to that of the UVB-MED
(1.5). This similarity reflects the good correlation between the
UVB-MED and the yield of TT-CPD produced by UVB
radiation. It is thus expected that for different phototypes,
exposure to one UVB-MED leads to the same amounts
of DNA photoproducts, in contradiction with the report by
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Tadokoro et al. (2003) that one UVB-MED induced more
damage in fair skins than in dark ones. However, the UVB-
MED of the volunteers in this last study ranged over a factor of
more than 4 and included both highly resistant and highly
sensitive individuals. In addition, a mild difference in the
yield of damage for one UVB-MED was observed for groups
with intermediate sensitivities, which correspond to those
used in this study. Another confounding factor is the inclusion
of several ethnic origins in the study by Tadokoro et al.
(2003), while our groups were much more homogenous from
that perspective.

The good correlation between UVB-MED and yield of
CPD was also observed for skin biopsies after irradiation with
200 J cm�2 UVA, a dose received on a summer day and to
twice the dose applied during a UVAI phototherapy
treatment. The ratio between the frequency of CPDs in
phototype II and IV skins was 1.6 (II vs. IV), close to the value
of 1.5 (IV vs. II) for the ratio of UVB-MED. It must be
emphasized that the relative distribution of dimeric lesions
was different from that observed with UVB, in agreement
with previous observations (Douki et al., 2000, 2003;
Courdavault et al., 2004; Mouret et al., 2006). These results
show that both the phototype and the UVB-MED efficiently
predict the sensitivity of the skin to the induction of TT CPD
not only after exposure to UVB but also to UVA. Such a
correlation was reported before for UVB-induced CPDs
(Young et al., 1998a, 2000; Del Bino et al., 2006), but to
our knowledge this is previously unreported for UVA.

In view of these results, it could be tempting to propose
UVB-MED as a reliable predictor of DNA damage in the
estimation of the protection afforded by sunscreens in the
UVA range. This proposal, that could somewhat be justified
in the UVB range where both erythema and DNA damage
induction exhibit a maximum, is however misleading. A first
drawback in such an approach for UVA is the complete lack
of correlation between the erythemal response and the yield
of CPDs, as observed in phototype II volunteers exposed to
UVA. It must also be emphasized that sunscreens exhibit a
much higher protection in the UVB than the UVA range.
Application of the sunscreen, particularly if it has a very high
sun protection factor, to the tested area leads to an increase in
the UVA to UVB ratio of the radiation reaching skin cells,
thereby completely modifying the respective induction of
erythema and dimers. A true evaluation of the genetic
protection afforded by sunscreens toward DNA would thus be
the direct quantification of the CPDs. Work is in progress in our
group to further establish this approach (Mouret et al., 2011).

Our results also provide some information on the origin of
CPDs in the UVA range. An important issue is whether these
photoproducts arise from a direct mechanism or a photo-
sensitized reaction. Our present observations do not allow us
to draw definitive conclusion, but permit to rule out some
hypotheses. In particular, no correlation could have been
observed between the yields of UVA- and UVB-induced
CPDs if the former photoreaction involved endogenous
photosensitizers present in larger amount in dark skins.
In addition, our data show that the key parameter for the
UVA-induced formation of CPD is the physical dose of light

reaching DNA. This important observation made under
physiologically relevant conditions is another suggestion of
a direct photoreactivity of DNA exposed to UVA, even in
whole skin. It should be reminded that experiments have
shown that UVA irradiation of naked DNA, namely in the
absence of photosensitizers, gave rise to CPDs (Quaite et al.,
1992; Zhang et al., 1997; Kuluncsics et al., 1999; Jiang et al.,
2009; Mouret et al., 2010). In addition, the yield of CPD is
similar with that observed in cultured cells, thus showing that
no endogenous photosensitizer enhances the efficiency of
this photoreaction (Kuluncsics et al., 1999; Perdiz et al.,
2000; Mouret et al., 2010). Yet, the distribution of photo-
products upon UVA irradiation is drastically different from
that after exposure to UVB. This result points to a need in the
identification of the initial photophysical events.

The data suggesting a direct photochemical pathway in the
UVA induction of CPDs emphasize the need to consider the
UVA range in the estimation of cancer risk. Indeed, DNA
appears now as intrinsically sensitive to this class of radiation,
with no complete protection possibly afforded by exogenous
components such as antioxidant orally supplemented. The
only complete protection against UVA appears to be sun
avoidance or complete blocking of radiation. Our results also
bring additional evidence for the lack of innocuousness of
artificial UVA-rich sources used in tanning equipments. Data
on UVA-MED obtained with phototype II individuals show
that erythema cannot be expected to act as a warning signal
before occurrence of significant DNA damage with UVA-rich
sunbeds. It thus appears that identification of the most
sensitive individuals toward UVA induction of CPDs before
exposure to either natural or artificial UV is a key aspect of
prevention. Fortunately, we showed that the determination of
the classical UVB-MED and more conveniently of the skin
phototype are useful tools in the prevention of adverse effects
of UVA toward DNA, as they are for UVB.

MATERIALS AND METHODS
Panel of volunteers

Twenty-four healthy volunteers were recruited through advertising in

print media and by word of mouth to participate. Volunteers had to

be healthy men aged between 20 and 33 years. Twelve exhibited

skin phototype II and 12 skin phototype IV according to Fitzpatrick’s

skin typing system based on self-reported erythema sensitivity and

tanning ability (type II, burns easily and tans with difficulty and type

IV, burns occasionally, tans readily; Fitzpatrick, 1988). A visual

evaluation of skin color was also made to confirm the skin phototype.

Exclusion criteria included smoking, medical treatment, abnormal

photosensitivity, recreational sunbathing, and exposure of back skin to

sunlight or artificial source UV within 3 months of the start of the study,

evolutive dermatosis of the back, presence of naevi in the irradiation

areas. The study was carried out with the approval of the local

committee for the protection of persons, and the volunteers signed an

informed consent. The experiment was conducted according to the

Declaration of Helsinki Principles guidelines.

MED determination

MEDs induced by either simulated solar radiation or UVA were

determined after irradiation on the back of each volunteer. First,
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the MED was determined using a solar simulator equipped with a

xenon lamp (Dermolum UM-W*, Muller, Moosinning, Germany).

The fluence rate was determined by a wide-band thermopile

radiometer covering the entire emission spectrum, from UV to

infrared radiation. The content of the lamp in UVB to the overall

spectrum was B5%. Thus, reported values for MED correspond to

energy of the full spectrum and should be divided by a factor of 20

to be expressed in UVB similar to some other works. The erythemal

response after irradiation induced by this type of equipment mostly

reflected the UVB effect and was thus referred to as UVB-MED. The

minimal dose of solar-simulated radiation required to induce a just

perceptible erythema at 24 hours (UVB-MED) was determined by

geometric exposure series (Diffey and Farr, 1989) at nine sites from

0.4 to 2.384 J cm�2 for skin phototype II and from 0.5 to

2.980 J cm�2 for skin phototype IV, using a commercial template

with a series of 1.5� 1.5 cm openings with removable flaps. A

high-pressure UVA metal halide lamp (UVA 700 L Waldmann,

Villingen-Schweinningen, Germany; Supplementary data, Figure

S2 online) was used to determine the MED induced by UVA (UVA-

MED). The proportion of UVB was 0.003%, with intensity at

320 nm representing 0.04% of that at 365 nm. This distribution

weighted by the Commission Internationale de l’Eclairage

erythema action spectrum yielded a spectrum centered in the UVA

range (Supplementary Figure S3 online). The fluence rate was

determined by using the built-in probe of the irradiator as described

by the manufacturer. For the determination of UVA-MED exposures of

10, 20, 30, 40, and 50 J cm�2 on an area of 2� 2 cm were applied to

all the volunteers. For two phototype II and three phototype IV

volunteers, the applied UVA dose was limited to 50 J m�2 even in the

absence of erythemal response. For both solar-simulated radiation and

UVA, readings were performed 24 hours after irradiation. A late

reading 48 hours after irradiation was also made after UVA irradiation

to put out the immediate darkening for the skin phototype IV.

Irradiation of skin biopsies
Four 4 mm punch biopsies were taken for each volunteer from an

unexposed area of the skin (top of the buttock). A stitch was made

and the wound was controlled after 24 hours. The biopsies were

kept in fresh media for no longer than 90 minutes. They were then

rinsed four times in phosphate-buffered saline, placed in 35 mm

Petri dishes with phosphate-buffered saline. Two biopsies were

irradiated with UVA, one with UVB and the last was kept as an

untreated control. UVA irradiations were performed on ice with

700 W UVA lamp (UVA 700 L, Waldmann) described above. The

overall fluence was 200 J cm�2 (irradiation time 45 minutes). UVB

irradiation, carried out at room temperature, involved the use of a

VL 215 G irradiator (Bioblock Scientific, Illkirch, France) fitted with

two 15 W tubes with a broad-spectrum distribution with a

maximum at 312 nm. A 295 nm cut-off filter (WG295, Schott,

Yverdon les Bains, Switzerland) was placed on top of the samples

in order to remove the minute component of high-energy radiation.

The proportion of UVC was thus limited to 0.07% with respect to

UVB (Supplementary data, Figure S4 online). The fluence rate was

measured by a VLX 3W radiometer (Vilbert Lourmat, Marne la

Vallée, France) equipped with a 312 nm probe. The applied fluence

was 0.2 J cm�2, corresponding to irradiation periods of 4 minutes.

After irradiation, biopsies were kept frozen at �80 1C before

extraction in order to prevent DNA repair.

Quantification of DNA photoproducts
For DNA extraction, human skin was first grinded in liquid nitrogen.

For the UVA samples, two biopsies were combined before

extraction. Then, DNA was extracted with the Qiagen DNEasy

Tissue Kit (Courtabœuf, France). The powder obtained after cold

grinding was recovered in the first lysis buffer prior to be incubated

overnight at 55 1C with proteinase K. An RNase-A treatment and a

second lysis step (buffer AL) were performed before loading the

samples onto the DNEasy mini spin column. DNA was then eluted in

two successive steps by using 200ml of water. The sample was

freeze-dried overnight and the resulting DNA residue was dissolved

in 50 ml of 0.1 mM deferroxiamine mesylate solution. The solution

was then incubated in a first step (2 hours, 37 1C) at

pH 6 in the presence of nuclease P1, DNase II, and phosphodie-

sterase II. The pH was then raised to 8 by the addition of Tris. A

second incubation period in the presence of phosphodiesterase I and

alkaline phosphatase (37 1C, 2 hours) yielded digested DNA with

normal bases as nucleosides and photoproducts as dinucleoside

monophosphates. Samples were then injected on an HPLC systems

(Agilent, Massy, France) connected to a reverse-phase HPLC column

(150� 2 mm ID, 5 mm particle size, ODB, Montluçon, France). The

detection was provided first by a UV detector aimed at quantifying

normal nucleosides. Photoproducts were detected by a tandem mass

spectrometer (API 3000, SCIEX, Thornill, Canada) used in the

reaction-monitoring mode as previously described (Douki et al.,

2000; Douki and Cadet, 2001). The four CPDs and the four 64PPs

(TT, TC, CT, and CC derivatives) were quantified individually in the

same HPLC run. Results were expressed in number of lesions per

million normal bases.

Statistical analyses

For comparison of averages between the two phototype groups, a

Student’s test was used after a Fisher test of the identity of variance.

Data were also analyzed by calculating the median that was found

to be close to the average (with the exception of UVA-MED), and

by using the non-parametric Wilcoxon matched pair test. For trends

comparisons, the Pearson’s coefficient was calculated. It was then

used to determine the t-value that was used for Student’s test with

n-2 degrees of freedom. Only differences with P-values o0.05 were

considered significant.
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